4-2.Quadratic Equations and Inequations
medium

The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .

A

$6$

B

$0$

C

$4$

D

$2$

(JEE MAIN-2021)

Solution

Case$-I$

$x \leq 5$

$(x+1)^{2}-(x-5)=\frac{27}{4}$

$(x+1)^{2}-(x+1)-\frac{3}{4}=0$

$x+1=\frac{3}{2},-\frac{1}{2}$

$x=\frac{1}{2},-\frac{3}{2}$

Case$-II$

$x >5$

$(x+1)+(x-5)=\frac{27}{4}$

$(x+1)^{2}+(x+1)-\frac{51}{4}=0$

$x=\frac{-1 \pm \sqrt{52}}{2}($ rejected as $x > 5)$

So, the equation have two real root.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.