- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
medium
The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .
A
$6$
B
$0$
C
$4$
D
$2$
(JEE MAIN-2021)
Solution
Case$-I$
$x \leq 5$
$(x+1)^{2}-(x-5)=\frac{27}{4}$
$(x+1)^{2}-(x+1)-\frac{3}{4}=0$
$x+1=\frac{3}{2},-\frac{1}{2}$
$x=\frac{1}{2},-\frac{3}{2}$
Case$-II$
$x >5$
$(x+1)+(x-5)=\frac{27}{4}$
$(x+1)^{2}+(x+1)-\frac{51}{4}=0$
$x=\frac{-1 \pm \sqrt{52}}{2}($ rejected as $x > 5)$
So, the equation have two real root.
Standard 11
Mathematics